Chromosome contacts in activated T cells identify autoimmune disease-candidate genes. Oliver S Burren 1,8 , Arcadio Rubio García 1 , Biola-Maria Javierre 2 , Daniel B Rainbow 1 , Jonathan Cairns 2 , Nicholas J Cooper 1 , John J Lambourne 3,4 , Ellen Schofield 1 , Xaquin Castro Dopico 1 , Ricardo C Ferreira 1 , Richard Coulson 1 , Frances Burden 3,4 , Sophia P Rowlston 3,4 Kate Downes^{3,4} Steven W Wingett², Mattia Frontini^{3,4,5}, Willem H Ouwehand^{3,4,5,6}, Peter Fraser², Mikhail Spivakov², John A Todd¹, Linda S Wicker¹, Antony J Cutler¹, Chris Wallace^{1,7,8}. 1 JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, University of Cambridge, UK; 2 The Babraham Institute, Cambridge, UK; 3 Department of Haematology, University of Cambridge, UK; 4 NHS Blood and Transplant NIHR Cambridge Biomedical Campus, Cambridge, UK; ⁵British Heart Foundation Centre of Excellence, University of Cambridge, UK; ⁶Wellcome Trust Sanger Institute, Hinxton, UK; ⁷MRC Biostatistics Unit, Cambridge, UK; ⁸Department of Medicine, University of Cambridge, UK. Contact: ob219@cam.ac.uk #### Promoter capture Hi-C (PCHi-C) can link putative causal variants to genes Genome-wide association studies tell us about variation and phenotype. PCHi-C can indicate which genomic regions physically interact with gene promoters in specific tissue contexts. By integrating these we can develop a data-driven approach to prioritise causal candidate genes and tissue contexts for follow up functional studies. As part of a larger study encompassing 17 primary human haematopoietic tissues(1), we used a combination of PCHi-C, total RNA-Seq and CHiP-Seq to examine the effect of activation on human CD4⁺ T cells at a 4 hour time point. We prioritised genes and tissue contexts for functional validation by integrating these data with summary GWAS statisites for 11 autoimmune traits. ### Chromosome interactions influence lineage fate and gene expression Clustering of chromatin interactions for 17 primary human tissues identified by PCHi-C reacapitulates the haematopoietic lineage tree. PCHi-C target gene expression correlates synergistically with promoter interaction region (PIR) gain and enhancer RNA (eRNA) expression on activation. #### PCHi-C assisted gene prioritisation across 6 autoimmune traits Functional gene prioritisation across 11 autoimmune diseases using genome wide (GWAS) or targeted genotyping array (ImmunoChip) data for autoimmune disease loci curated in http://www.immunobase.org #### Autoimmune GWAS signals are enriched in activated CD4⁺ T Cell PIRs Inspired by GOSHIFTER(2), we developed *blockshifter*, a method to examine the enrichment of GWAS summary statistics between tissue specific PIRs in the presence of correlation. We examined summary statistics for 31 GWAS traits and found autoimmune traits are most strongly enriched in activated CD4+ Cell PIRs ## Interaction-mediated regulation of *IL2RA* expression COGS analysis prioritised IL2RA in multiple autoimmune diseases. We previously fine mapped five signals (A-F) in type 1 diabetes (T1D) and multiple sclerosis (MS)(2). PCHi-C data shows constitutive interactions between the promoter of IL2RA and SNP set 'A' regardless of tissue state. On activation other interactions between downstream regions overlapping SNP sets 'D-F' form. Allelically imbalanced transcription of IL2RA within CD4+ T cells of individuals heterozygous for PCHi- C linked autoimmne-associated variants is specific to non-activated cells. Alleleic imbalance for individuals heterozygous for group 'A' SNPs. A) Allelic ratio is balanced (1:1) in genomic DNA (black), and activated cells at 2 and 4 hours (purple), but imbalanced in freshly sorted (blue) or non-activated (green) cells, Allelic ratio is defined as the ratio of counts from the two alleles, shown on a log scale. Each point represents the mean over 2-3 replicates for each of 4-5 individuals. B) Allelic ratio in memory CD4+ T cells falls upon activation in cells from eight individuals. #### Integrating PCHi-C with GWAS summary statistics Capture Hi-C Omnibus Gene Score (COGS) is a Bayesian method for integrating PCHi-C data and GWAS to prioritise gene and tissue contexts according to SNP overlap with: - 1. Coding Regions. - 2. "Promoter" regions/short range interactions, refractive to PCHi-C interrogation. - 3. Constitutive and tissue specific PIRs. #### References - (1) Javierre et al. (2016) *Cell*, (2) Trynka et al. (2015) *Am. J. Hum. Genet.*, (3) Wallace et al. (2015) PLOS Genet.. - Data freely available for interactive exploration at http://www.chicp.org - →Pre-print available at http://biorxiv.org/content/early/2017/01/17/100958